Fractal universe and cosmic acceleration in a Lemaître-Tolman-Bondi scenario

muz
Abstract: In this paper we attempt to answer to the question: can cosmic acceleration of the Universe have a fractal solution? We give an exact solution of a Lemaitre-Tolman-Bondi (LTB) Universe based on the assumption that such a smooth metric is able to describe, on average, a fractal distribution of matter. While the LTB model has a center, we speculate that, when the fractal dimension is not very different from the space dimension, this metric applies to any point of the fractal structure when chosen as center so that, on average, there is not any special point or direction. We examine the observed magnitude-redshift relation of type Ia supernovae (SNe Ia), showing that the apparent acceleration of the cosmic expansion can be explained as a consequence of the fractal distribution of matter when the corresponding space-time metric is modeled as a smooth LTB one and if the fractal dimension on scales of a few hundreds Mpc is D=2.9±0.02.
Comments: 6 pages, 4 figures, accepted for publication in Classical and Quantum Gravity
Subjects: Cosmology and Nongalactic Astrophysics (astro-ph.CO); General Relativity and Quantum Cosmology (gr-qc)
Cite as: arXiv:1810.06318 [astro-ph.CO]
(or arXiv:1810.06318v1 [astro-ph.CO] for this version)
Advertisements

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out /  Change )

Google+ photo

You are commenting using your Google+ account. Log Out /  Change )

Twitter picture

You are commenting using your Twitter account. Log Out /  Change )

Facebook photo

You are commenting using your Facebook account. Log Out /  Change )

Connecting to %s