Tag Archives: physics

Exploring the Dark Matter Disc Model in Dwarf Galaxies: Insights from the LITTLE THINGS Sample

Francesco Sylos LabiniRoberto Capuzzo-DolcettaGiordano De MarzoMatteo Straccamore

ABSTRACT We conducted an analysis of the velocity field of dwarf galaxies in the LITTLE THINGS sample, focusing on deriving 2D velocity maps that encompass both the transverse and radial velocity fields. Within the range of radial distances where velocity anisotropies are sufficiently small for the disc to be considered rotationally supported, and where the warped geometry of the disc can be neglected, we reconstructed the rotation curve while taking into account the effect of the asymmetric drift. To fit the rotation curves, we employed the standard halo model and the dark matter disc (DMD) model, which assumes that dark matter is primarily confined to the galactic discs and can be traced by the distribution of HI. Interestingly, our analysis revealed that the fits from the DMD model are statistically comparable to those obtained using the standard halo model, but the inferred masses of the galaxies in the DMD model are approximately 10 to 100 times smaller than the masses inferred in the standard halo model. In the DMD model, the inner slope of the rotation curve is directly related to a linear combination of the surface density profiles of the stellar and gas components, which generally exhibit a flat core. Consequently, the observation of a linear relationship between the rotation curve and the radius in the disc central regions is consistent with the framework of the DMD model.

Continue reading Exploring the Dark Matter Disc Model in Dwarf Galaxies: Insights from the LITTLE THINGS Sample

Violent relaxation of ellipsoidal clouds

Fig18b

David Benhaiem and Francesco Sylos Labini

An isolated, initially cold and ellipsoidal cloud of self-gravitating particles represents a relatively simple system in which to study the effects of deviations from spherical symmetry in the mechanism of violent relaxation. Initial deviations from spherical symmetry are shown to play a dynamical role that is equivalent to that of density fluctuations in the case of an initially spherical cloud. Indeed, these deviations control the amount of particle-energy change and thus determine the properties of the final energy distribution, particularly the appearance of two species of particles: bound and free. Ejection of mass and energy from the system, together with the formation of a density profile decaying as ρ(r) ∼ r−4 and a Keplerian radial velocity dispersion profile, are prominent features similar to those observed after the violent relaxation of spherical clouds. In addition, we find that ejected particles are characterized by highly non-spherical shapes, the features of which can be traced in the initial deviations from spherical symmetry that are amplified during the dynamical evolution: particles can indeed form anisotropic configurations, like bars and/or discs, even though the initial cloud was very close to spherical.

Get the full paper here: MNRAS 448, 2634–2643 (2015)